A korarchaeal genome reveals new insights into the evolution of the Archaea
نویسندگان
چکیده
The candidate division Korarchaeota comprises a group of uncultivated microorganisms which, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here we report the initial characterization of a member of the Korarchaeota with the proposed name, “Candidatus Korarchaeum cryptofilum” which exhibits an ultra-thin, filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun (WGS) sequencing to construct a complete, composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G+C content of 49%. Of the 1602 predicted protein-coding genes, 1382 (86%) could be assigned to a revised set of archaeal COGs. The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, coenzyme A, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems such as cell division, DNA replication, and tRNA maturation resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.
منابع مشابه
A korarchaeal genome reveals insights into the evolution of the Archaea.
The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous m...
متن کاملIdentified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملEvolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملGene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملژنومیکس انگل ها
Genes carry instructions to make protein that affect body's cells and their physical activity. They also play an important role in the occurrence of various characteristics in the body. Recently, scientists in the new field of science known as genomics have studied the genetic instructions. Genomics deals with the discovery of all the sequences in the entire genome of organisms and is used to s...
متن کامل